Unit Review: Kinematics

Part A Extended Answers

- 1. Identify each of the following quantities as either a vector (v) or a scalar (s):
 - a. Speed
 b. Acceleration
 c. Mass
 d. Weight
- 2. Explain the difference between position, displacement, and distance.

3. Explain the difference between an instant of time and an interval of time.

4. A beam of light is generated at point A. It travels east, strikes a mirror, and returns to point A 0.23 s later. If the speed of light is $3.0 \times 10^8 m/s$, how far away is the mirror from point A?

5. The position of an automobile changes over a 20 second time period as shown in the table below:

Time (s)	Position (m)
0	0
4	20
8	20
14	-20
20	-5

a. Plot the position-time graph of the motion.

b. Give a detailed description of the car's motion from beginning to end.

- c. Calculate the velocity of the car in each of the following time intervals:
 - i. 0 to 4 s
 - ii. 4 to 8 s
 - iii. 8 to 14 s
 - iv. 14 to 20 s
- d. Calculate the displacement of the car for the entire 20 s interval.

e. Calculate the average velocity of the car from t = 4 s to t = 14 s.

6. A bullet is traveling at 325 m/s when it strikes a target and is brought to rest in 0.05 s. What is the acceleration of the bullet while it is stopping?

7. A car is at rest at a red light. The light turns green and the car accelerates away from the light at a rate of 2.8 m/s^2 . After accelerating for 5 seconds, the driver then applies the breaks and decelerates to a stop at a second red light. If the driver took 3 seconds to stop, determine the distance between the two lights.

Part B Multiple Choice

Choose the best possible answer and circle the appropriate letter.

- 1. A physics student adds two displacement vectors with magnitudes of 8.0 km and 6.0 km. Which of the following statements is **true** concerning the magnitude of the resultant displacement?
 - a. It must be 2.0 km.
 - b. It must be 14.0 km.
 - c. No conclusion can be reached without knowing the directions of the vectors.
 - d. It could have any value between 2.0 km and 14.0 km depending on how the vectors are oriented.
- 2. Town A lies 20 km north of town B. Town C lies 13 km west of town A. A small plane flies directly from town B to town C. What is the displacement of the plane?
 - a. $33 m [33^{\circ} N \text{ of } W]$ c. $24 m [57^{\circ} N \text{ of } W]$ b. $19 m [33^{\circ} N \text{ of } W]$ d. $31 m [57^{\circ} N \text{ of } W]$

Questions 3 to 6 refer to the following velocity-time graph.

- 3. During which interval(s) of the graph does the object have a constant velocity?
 - a. 0 s to 2 s
 b. 2 s to 3 s
 c. 0 s to 2 s and 3 s to 5 s
 d. 0 s to 2 s, 3 s to 5 s, and 5 s to 6 s

4. During which interval(s) of the graph does the object have a constant rate of acceleration?

a. 0 s to 2 s
b. 2 s to 3 s
c. 0 s to 2 s and 3 s to 5 s
d. 0 s to 2 s, 3 s to 5 s, and 5 s to 6 s

5. How far does the object move in the interval from t = 0 to t = 2 s?

a.	7.5 m	c.	15 m
b.	10 <i>m</i>	d.	20 m

6. What is the acceleration of the object in the interval from t = 5 s to t = 6 s?

a.
$$+20 m/s^2$$
c. $+10 m/s^2$ b. $-20 m/s^2$ d. $-10 m/s^2$

7. When the outdoor emergency siren at Cheryl's school was tested, the sound from the siren took 7.0 s to reach her house located 2.4 km from the school. What is the speed of sound in air?

a.	240 <i>m / s</i>	c.	440 <i>m / s</i>
b.	340 <i>m / s</i>	d.	540 <i>m / s</i>

- 8. In which of the following situations does the car have a westward acceleration?
 - a. The car travels westward at a constant speed.
 - b. The car travels eastward and speeds up.
 - c. The car travels westward and slows down.
 - d. The car travels eastward and slows down.
- 9. An elevator is moving upward with a speed of 11 m/s. Three seconds later, the elevator is still moving upward, but its speed has been reduced to 5 m/s. What is the average acceleration of the elevator during the 3 s time interval?

a.	$2.0 \ m/s^2 \ [down]$	c.	$5.3 m / s^2 [down]$
b.	2.0 m/s^2 [up]	d.	5.3 $m / s^2 [up]$

- 10. Which one of the following situations is **not** possible?
 - a. A body has zero velocity and non-zero acceleration.
 - b. A body travels with a constant velocity and a constant acceleration.
 - c. A body travels with a constant velocity and a changing acceleration.
 - d. A body travels with a changing velocity and a constant acceleration.
- 11. A car, starting from rest, accelerates in a straight path at a constant rate of 2.5 m/s^2 . How far will the car travel in 12 seconds?

a.	180 <i>m</i>	c.	30 m
b.	120 <i>m</i>	d.	15 m

- 12. An object moving along a straight line is decelerating. Which of the following statements **must** always be true in this situation?
 - a. The direction of the acceleration is the same as the direction of the displacement.
 - b. An object that is decelerating has a negative acceleration.
 - c. The direction of the acceleration is opposite to that of the velocity.
 - d. The acceleration changes as the object moves along the line.
- 13. A body initially at rest is accelerated at a constant rate for 5 seconds in the positive x direction. If the final speed of the body is 20 m/s, what was the body's acceleration?
 - a. $0.25 m/s^2$ c. $4.0 m/s^2$ b. $2.0 m/s^2$ d. $9.8 m/s^2$
- 14. The minimum takeoff speed for a certain airplane is 75 m/s. What minimum acceleration is required if the plane must leave a runway of length 950 m? Assume the plane starts from rest at one end of the runway.

a.	1.5 m/s^2	c.	4.5 m/s^2
b.	3.0 m/s^2	d.	6.0 m/s^2

15. An object starts from rest and accelerates uniformly in a straight line in the positive x direction. After 11 seconds, its speed is 70 m/s. How far does the object travel?

a.	35 m	c.	385 m
b.	77 <i>m</i>	d.	590 m